21 research outputs found

    Generalized formulation to estimate the Supercapacitor’s R-C series impedance using fractional order model

    Get PDF
    The main objective of this paper is to develop a new technique for the supercapacitor’s parameter identification that can handle the issue of initial voltage. An effective approach is proposed using the fractional-order derivative for accurate identification of a well-known series Resistance-Capacitance (R-C) model. An expression is derived using the Caputo definition and the Haar wavelet operational matrix, which is sufficient for both charging and discharging phase data of supercapacitors. To extract impedance parameters, voltage stimulated step response is utilized and parameters are calculated despite random initial voltage stored in a supercapacitor. This operational matrix approach transforms complex fractional derivative terms into simple algebraic expressions and reduces the overall complexity. The proposed technique shows a very good agreement with experimental data that exhibit different initial voltages and different time-frames. Investigations and experiments with various supercapacitors clearly reveal the importance of the developed equation for a fractional R-C model

    A single-step identification strategy for the coupled TITO process using fractional calculus

    Get PDF
    The reliable performance of a complete control system depends on accurate model information being used to represent each subsystem. The identification and modelling of multivariable systems are complex and challenging due to cross-coupling. Such a system may require multiple steps and decentralized testing to obtain full system models effectively. In this paper, a direct identification strategy is proposed for the coupled two-input two-output (TITO) system with measurable input–output signals. A well-known closed-loop relay test is utilized to generate a set of inputs–outputs data from a single run. Based on the collected data, four individual fractional-order transfer functions, two for main paths and two for cross-paths, are estimated from single-run test signals. The orthogonal series-based algebraic approach is adopted, namely the Haar wavelet operational matrix, to handle the fractional derivatives of the signal in a simple manner. A single-step strategy yields faster identification with accurate estimation. The simulation and experimental studies depict the efficiency and applicability of the proposed identification technique. The demonstrated results on the twin rotor multiple-input multiple- output (MIMO) system (TRMS) clearly reveal that the presented idea works well with the highly coupled system even in the presence of measurement noise

    Parametric identification of nonlinear fractional Hammerstein models

    Get PDF
    In this paper, a system identification method for continuous fractional-order Hammerstein models is proposed. A block structured nonlinear system constituting a static nonlinear block followed by a fractional-order linear dynamic system is considered. The fractional differential operator is represented through the generalized operational matrix of block pulse functions to reduce computational complexity. A special test signal is developed to isolate the identification of the nonlinear static function from that of the fractional-order linear dynamic system. The merit of the proposed technique is indicated by concurrent identification of the fractional order with linear system coefficients, algebraic representation of the immeasurable nonlinear static function output, and permitting use of non-iterative procedures for identification of the nonlinearity. The efficacy of the proposed method is exhibited through simulation at various signal-to-noise ratios

    Fractional - order system modeling and its applications

    Get PDF
    In order to control or operate any system in a closed-loop, it is important to know its behavior in the form of mathematical models. In the last two decades, a fractional-order model has received more attention in system identification instead of classical integer-order model transfer function. Literature shows recently that some techniques on fractional calculus and fractional-order models have been presenting valuable contributions to real-world processes and achieved better results. Such new developments have impelled research into extensions of the classical identification techniques to advanced fields of science and engineering. This article surveys the recent methods in the field and other related challenges to implement the fractional-order derivatives and miss-matching with conventional science. The comprehensive discussion on available literature would help the readers to grasp the concept of fractional-order modeling and can facilitate future investigations. One can anticipate manifesting recent advances in fractional-order modeling in this paper and unlocking more opportunities for research

    Optimized fractional low and highpass filters of (1 + α) order on FPAA

    Get PDF
    This work proposes an optimum design and implementation of fractional-order Butterworth filter of order (1 + α), with the help of analog reconfigurable field-programmable analog array (FPAA). The designed filter coefficients are obtained after dual constraint optimization to balance the tradeoffs between magnitude error and stability margin together. The resulting filter ensures better robustness with less sensitivity to parameter variation and minimum least square error (LSE) in magnitude responses, passband and stopband errors as well as a better –3dB normalized frequency approximation at 1 rad/s and a stability margin. Finally, experimental results have shown both lowpass and highpass fractional step values. The FPAA-configured outputs represent the possibility to implement the real-time fractional filter behavior with close approximation to the theoretical design

    Identification scheme for fractional Hammerstein Models with the delayed Haar Wavelet

    Get PDF
    The parameter identification of a nonlinear Hammerstein-type process is likely to be complex and challenging due to the existence of significant nonlinearity at the input side. In this paper, a new parameter identification strategy for a block-oriented Hammerstein process is proposed using the Haar wavelet operational matrix (HWOM). To determine all the parameters in the Hammerstein model, a special input excitation is utilized to separate the identification problem of the linear subsystem from the complete nonlinear process. During the first test period, a simple step response data is utilized to estimate the linear subsystem dynamics. Then, the overall system response to sinusoidal input is used to estimate nonlinearity in the process. A single-pole fractional order transfer function with time delay is used to model the linear subsystem. In order to reduce the mathematical complexity resulting from the fractional derivatives of signals, a HWOM based algebraic approach is developed. The proposed method is proven to be simple and robust in the presence of measurement noises. The numerical study illustrates the efficiency of the proposed modeling technique through four different nonlinear processes and results are compared with existing methods

    Bibliometric analysis of emerging technologies in the field of computer science helping in ovarian cancer research

    Get PDF
    This study is carried out to provide an analysis of the literature available at the intersection of ovarian cancer and computing. A comprehensive search was conducted using Scopus database for English-language peer-reviewed articles. The study administers chronological, domain clustering and text analysis of the articles under consideration to provide high-level concept map composed of specific words and the connections between them

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
    corecore